(1 +i) - ary GCD Computation inZ[ i ]as an Analogue to the Binary GCD Algorithm

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binary GCD algorithm

The binary GCD algorithm, also known as Stein’s algorithm, is an algorithm that computes the greatest common divisor of two nonnegative integers. Stein’s algorithm uses simpler arithmetic operations than the conventional Euclidean algorithm; it replaces division with arithmetic shifts, comparisons, and subtraction. Although the algorithm was first published by the Israeli physicist and programm...

متن کامل

GCDHEU: Heuristic Polynomial GCD Algorithm Based on Integer GCD Computation

A heuristic algorithm, GCDHEU, is described for polynomial GCD computation over the integers. The algorithm is based on evaluation at a single large integer value (for each variable), integer GCD computation, and a single-point interpolation scheme. Timing comparisons show that this algorithm is very efficient for most univariate problems and it is also the algorithm of choice for many problems...

متن کامل

A Binary Recursive Gcd Algorithm

The binary algorithm is a variant of the Euclidean algorithm that performs well in practice. We present a quasi-linear time recursive algorithm that computes the greatest common divisor of two integers by simulating a slightly modified version of the binary algorithm. The structure of our algorithm is very close to the one of the well-known Knuth-Schönhage fast gcd algorithm; although it does n...

متن کامل

On the l-Ary GCD-Algorithm in Rings of Integers

We give an l-ary greatest common divisor algorithm in the ring of integers of any number field with class number 1, i.e., factorial rings of integers. The algorithm has a quadratic running time in the bit-size of the input using naive integer arithmetic.

متن کامل

An Analysis of the Generalized Binary GCD Algorithm

In this paper we analyze a slight modification of Jebelean’s version of the k-ary GCD algorithm. Jebelean had shown that on n-bit inputs, the algorithm runs in O(n) time. In this paper, we show that the average running time of our modified algorithm is O(n/ logn). This analysis involves exploring the behavior of spurious factors introduced during the main loop of the algorithm. We also introduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 2000

ISSN: 0747-7171

DOI: 10.1006/jsco.2000.0422